mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome.
نویسندگان
چکیده
Peutz-Jeghers syndrome (PJS) is a familial cancer disorder due to inherited loss of function mutations in the LKB1/ STK11 serine/threonine kinase. PJS patients develop gastrointestinal hamartomas with 100% penetrance often in the second decade of life, and demonstrate an increased predisposition toward the development of a number of additional malignancies. Among mitogenic signaling pathways, the mammalian-target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in tissues and tumors derived from LKB1-deficient mice. Consistent with a central role for mTORC1 in these tumors, rapamycin as a single agent results in a dramatic suppression of preexisting GI polyps in LKB1+/- mice. However, the key targets of mTORC1 in LKB1-deficient tumors remain unknown. We demonstrate here that these polyps, and LKB1- and AMPK-deficient mouse embryonic fibroblasts, show dramatic up-regulation of the HIF-1alpha transcription factor and its downstream transcriptional targets in an rapamycin-suppressible manner. The HIF-1alpha targets hexokinase II and Glut1 are up-regulated in these polyps, and using FDG-PET, we demonstrate that LKB1+/- mice show increased glucose utilization in focal regions of their GI tract corresponding to these gastrointestinal hamartomas. Importantly, we demonstrate that polyps from human Peutz-Jeghers patients similarly exhibit up-regulated mTORC1 signaling, HIF-1alpha, and GLUT1 levels. Furthermore, like HIF-1alpha and its target genes, the FDG-PET signal in the GI tract of these mice is abolished by rapamycin treatment. These findings suggest a number of therapeutic modalities for the treatment and detection of hamartomas in PJS patients, and potential for the screening and treatment of the 30% of sporadic human lung cancers bearing LKB1 mutations.
منابع مشابه
LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism.
Research on the LKB1 tumor suppressor protein mutated in cancer-prone Peutz-Jeghers patients has continued at a feverish pace following exciting developments linking energy metabolism and cancer development. This review summarizes the current state of research on the LKB1 tumor suppressor. The weight of the evidence currently indicates an evolutionary conserved role for the protein in the regul...
متن کاملDysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes.
The LKB1 tumor suppressor protein controls the activity of the TSC1/TSC2 tumor suppressor complex. Mutations in LKB1 cause Peutz-Jeghers syndrome (PJS), and mutations in either TSC1 or TSC2 cause tuberous sclerosis complex--two syndromes characterized by the development of hamartomas. LKB1 activation by energy deprivation activates AMPK, which in turn phosphorylates and activates TSC2. TSC2 act...
متن کاملSuppression of Peutz-Jeghers polyposis by targeting mammalian target of rapamycin signaling.
PURPOSE Peutz-Jeghers syndrome (PJS) is a unique disorder characterized by the development of hamartomas in the gastrointestinal tract as well as increased risks for variety of malignancies. Germ-line mutations of LKB1 cause PJS. We have generated Lkb1+/- mice, which model human PJS. Rapamycin and its analogues are promising preventive and therapeutic agents that specifically inhibit signaling ...
متن کاملRegulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome.
Tuberous sclerosis complex (TSC) and Peutz-Jeghers syndrome (PJS) are dominantly inherited benign tumor syndromes that share striking histopathological similarities. Here we show that LKB1, the gene mutated in PJS, acts as a tumor suppressor by activating TSC2, the gene mutated in TSC. Like TSC2, LKB1 inhibits the phosphorylation of the key translational regulators S6K and 4EBP1. Furthermore, w...
متن کاملFunctional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity.
Germline mutations of the LKB1 gene are responsible for the cancer-prone Peutz-Jeghers syndrome (PJS). LKB1 encodes a serine-threonine kinase that acts as a regulator of cell cycle, metabolism and cell polarity. The majority of PJS missense mutations abolish LKB1 enzymatic activity and thereby impair all functions assigned to LKB1. Here, we have investigated the functional consequences of recur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 27 شماره
صفحات -
تاریخ انتشار 2009